On the structure of some locally nilpotent groups without contranormal subgroups

نویسندگان

چکیده

Abstract Following J. S. Rose, a subgroup ???? of group ???? is said to be contranormal in if G = H G=H^{G} . It well known that finite nilpotent and only it has no proper subgroups. We study nilpotent-by-?ernikov groups with Furthermore, we the structure subgroup.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subgroups defining automorphisms in locally nilpotent groups

We investigate some situation in which automorphisms of a groupG are uniquely determined by their restrictions to a proper subgroup H . Much of the paper is devoted to studying under which additional hypotheses this property forces G to be nilpotent if H is. As an application we prove that certain countably infinite locally nilpotent groups have uncountably many (outer) automorphisms.

متن کامل

Nilpotent groups with three conjugacy classes of non-normal subgroups

‎Let $G$ be a finite group and $nu(G)$ denote the number of conjugacy classes of non-normal subgroups of $G$‎. ‎In this paper‎, ‎all nilpotent groups $G$ with $nu(G)=3$ are classified‎.  

متن کامل

Locally Nilpotent Linear Groups

This article examines aspects of the theory of locally nilpotent linear groups. We also present a new classification result for locally nilpotent linear groups over an arbitrary field F. 1. Why Locally Nilpotent Linear Groups? Linear (matrix) groups are a commonly used concrete representation of groups. The first investigations of linear groups were undertaken in the second half of the 19th cen...

متن کامل

Locally Nilpotent Linear Groups with the Weak Chain Conditions on Subgroups of Infinite Central Dimension

Let V be a vector space over a field F . If G≤GL(V, F ), the central dimension of G is the F -dimension of the vector space V/CV (G). In [DEK] and [KS], soluble linear groups in which the set Licd(G) of all proper infinite central dimensional subgroups of G satisfies the minimal condition and the maximal condition, respectively, have been described. On the other hand, in [MOS], periodic locally...

متن کامل

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Group Theory

سال: 2021

ISSN: ['1435-4446', '1433-5883']

DOI: https://doi.org/10.1515/jgth-2021-0024